Mark Scheme

Statistics 1 (4766) January 2005
Mark Scheme

Qn	Answer	Mk	Comment
3	Let $\mathrm{P}(\mathrm{B})=\mathrm{x}$ Using $\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ $\begin{gathered} 0.9=2 x+x-0.3 \\ x=0.4 \\ P(B)=0.4 \end{gathered}$	M1 M1 A1	Correct set of equations Correct solution
4 (i) (ii) (iii)	r 0 1 2 3 4 $\mathrm{P}(X=r)$ $6 k$ $10 k$ $\mathbf{1 2 k}$ $\mathbf{1 2 k}$ $\mathbf{1 0 k}$ $50 k=1 \rightarrow k=1 / 50$ $\mathrm{E}(X)=110 k=2.2$ $\mathrm{P}(X>2.2)=22 k=0.44$	B1 B1 M1 M1 A1 B1	1 value correct all 3 correct sum of 1 sum of rp cao
5 (i) (ii)	$\begin{aligned} & \binom{12}{8} \text { ways of choosing forwards }=495 \\ & \binom{12}{8} \times\binom{ 11}{7} \text { ways of choosing team } \\ & =495 \times 330=163350 \end{aligned}$	M1 A1 M1 M1 A1	Product with (i) backs cao
6 (i) (ii) (iii) (iv)	$\mathrm{P}(\text { Correct forecast })=\frac{55+128+81}{365}=\frac{264}{365}$ P (Correct forecast given sunny forecast) $=\frac{55}{75}=0.733$ P (Correct forecast given wet weather) $=\frac{81}{117}=0.692$ P (Cloudy weather given correct forecast) $=\frac{128}{264}=0.485$	M1 A1 M1 A1 M1 A1 M1 A1	Numerator Denominator Denominator Denominator
Qn	Answer	Mk	Comment

8	Number not turning up $X \sim \mathrm{~B}(16,0.2)$		
(i)	$\mathrm{P}(X=0)=0.8^{16}=0.0281$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$	0.8^{16} or tables
(ii)	$\begin{aligned} \mathrm{P}(X>3) & =1-\mathrm{P}(X \leq 3) \text { or } \mathrm{P}(X \leq 12) \\ & =1-0.5981=0.4019\end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Manipulation Use of tables
(iii)	$X \sim \mathrm{~B}(17,0.2) \rightarrow \mathrm{P}(X \geq 1)=0.9775$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \mathrm{B}(17,0.2) \\ & 0.9775 \end{aligned}$
	Greater than 0.9 so acceptable	E1	
(iv)	$X \sim \mathrm{~B}(18,0.2) \rightarrow \mathrm{P}(X \geq 2)=0.9009$ Can make 18 appointments $X \sim \mathrm{~B}(19,0.2) \rightarrow \mathrm{P}(X \geq 3)=0.7631$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 18 \text { and } \geq 2 \\ & 0.9009 \end{aligned}$
		A1	
		M1	$19 \text { and } \geq 3$
(v)	Now $X \sim \mathrm{~B}(20, \mathrm{p})$		
	Let p be probability of not turning up. $\mathrm{H}_{0}: \mathrm{p}=0.2$	B1 B1 B1	
	$\mathrm{H}_{1}: \mathrm{p} \neq 0.2$	B1	
	$\mathrm{P}(X \leq 1)=0.0692>2.5 \%$ cannot reject H_{0} conclude that the proportion of patients not turning up is unchanged.	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	0.0692 correct comparison cannot reject H_{0}

